DIỄN ĐÀN LỚP CD06B

Diễn đàn trao đổi học tập lớp cd06b
 
IndexIndex  Trợ giúpTrợ giúp  Tìm kiếmTìm kiếm  Đăng kýĐăng ký  Đăng NhậpĐăng Nhập  
Tìm kiếm
 
 

Display results as :
 
Rechercher Advanced Search
Top posters
nguyenduytuan (596)
 
nguyennhungoc (193)
 
the_manh_87 (117)
 
ngthanhtien (116)
 
nguyenvannhan (96)
 
bavuong1 (87)
 
tuanduy (85)
 
nguyengiatruong (75)
 
mai van quyen_cd06103 (74)
 
NHAN007 (65)
 
MUSIC BOX

Statistics
Diễn Đàn hiện có 2773 thành viên
Chúng ta cùng chào mừng thành viên mới đăng ký: LE NGUYEN

Tổng số bài viết đã gửi vào diễn đàn là 3283 in 696 subjects
LINKS
LƯỢT TRUY CẬP

xoxHits.com - free counter service


Share | 
 

 Bổ đề cơ bản

Xem chủ đề cũ hơn Xem chủ đề mới hơn Go down 
Tác giảThông điệp
nguyenduytuan
Administrator
Administrator
avatar

Tổng số bài gửi : 596
Join date : 07/01/2010
Đến từ : TP. Buôn Ma Thuột

Bài gửiTiêu đề: Bổ đề cơ bản   Mon Aug 30, 2010 2:31 am

Hôm qua ngày 29/08/2010 là ngày nước ta tổ chức phỏng vấn GS.Ngô Bảo Châu nhà ta. Mr.NBC (xin phép được viết tắt-đừng có lầm với Nguyễn Biên Cương bên bkdn)

Dạo này báo chí rộ lên GS.NBC đạt giải Fields của toán học nhờ cái công trình khoa học được đánh giá là tiêu biểu của năm 2009 : Chứng minh được "Bổ đề cơ bản". Nhưng hầu như các báo đưa tin chỉ là những thông tin sơ sơ, chỉ đủ để làm cho những con người bình thường như chúng ta biết ông NBC đạt được cái giải thưởng cao quý và chúng ta đang ăn mừng cái giải thưởng ấy lần đầu tiên được rinh về đất Việt.



Vậy Bổ đề cơ bản là gì ? Tầm quan trọng của khám phá này trong nghiên cứu khoa học và ứng dụng thực tiễn trong tương lai ra sao ?
Ta cần biết GS.NBC là 1 trong 4 người được nhận giải thưởng Fields cao quý nhưng chính những người được nhận giải phải thừa nhận rằng họ không thể hiểu hết công trình nghiên cứu của nhau. Vậy nên để viết một bài báo cáo để cho những người "ngoại đạo" có thể hiểu mà không bị nói là khoe chữ, và cũng để cho giới chuyên gia không chê cười là một chuyện khó như đội đá vá trời nếu không bỏ ra cả năm trời nghiên cứu trước công trình của GS.NBC.

Tuy nhiên thật may cho chúng ta là khi công bố công trình đạt giải người ta có đưa ra hai dạng tài liệu, một cho giới chuyên môn và một để công bố rộng rải cho công luận. Người viết bản giới thiệu công trình là một nhà báo chuyên môn (đây có lẽ là một khoảng trống trong ngành báo nước ta - còn thiếu những nhà báo có hiểu biết chuyên môn để viết những bài báo mang tính chuyên nghiệp cao). Ta có thể hiểu một cách ngắn gọn như sau :

Năm 1967, nhà toán học Robert Langlands đưa ra một loạt các giả thuyết táo bạo mà đa số cho đến nay vẫn chưa được chứng minh và sẽ là đề tài nghiên cứu cho nhiều thế hệ các nhà toán học trong tương lai. Tuy nhiên các giả thuyết này, được xây dựng thành một chương trình đầy tham vọng, nếu được chứng minh sẽ thống nhất nhiều lãnh vực toán học hiện đại lại thành một thể thống nhất, ví dụ giữa hình học, đại số và số học. Giả thiết đó là mối liên quan giữa lý thuyết số và lý thuyết nhóm. Hai cái lý thuyết này các bạn có thể tìm kiếm trên wiki để biết thêm nhưng ứng dụng của nó ta đã biết và sử dụng các kết quả của nó từ lâu mà không biết thôi. Ta đã từng biết đến "số nguyên tố" "bội số chung" "ước số" "hằng số pi" hằng số nepe (e),... của số học. Còn lý thuyết nhóm ta đã được tiếp xúc với khái niệm tập hợp, mà cụ thể là tập số tự nhiên hay tập số thực là đặc trưng của lý thuyết nhóm. Có thể ví 2 cái lý thuyết này như 2 con thuyền ở bên trái và bên phải nhưng ở rất xa tầm mắt của ông Langlands - người đưa ra cái giả thiết là hai con tàu này có nét gì đó giống nhau, tương đồng với nhau, nhưng vì nó ở quá xa nên không thấy rõ.

Một trong những công cụ được phát triển từ chương trình Langlands là “công thức vết Arthur-Selberg”, một phương trình cho thấy có thể dùng thông tin hình học để tính toán thông tin số học. Nhưng Langlands gặp một trở ngại lớn khi sử dụng công thức này, vì cứ xuất hiện những tổng số phức tạp. Theo Langlands các tổng số này bằng nhau nhưng ông không thể nào chứng minh được điều đó. Ông xem đây là một bài toán đơn giản nên gọi nó là “bổ đề” (lemma – một kết quả phụ được dùng để chứng minh những kết quả quan trọng hơn) và giao cho một nghiên cứu sinh giải quyết. Tầm quan trọng của bổ đề này được ví như việc ném một sợi dây có móc ở hai đầu vào hai con thuyền tạo tiền đề cho việc kéo nó lại gần nhau và gần ta hơn để dễ quan sát cái sự giống và liên hệ của nó như thế nào. Ngặt nỗi Chính ông Langlangs đã nhận định sai khi cho rằng đó là một vấn đề đơn giản nhất và ta chỉ mất có trên dưới 20 năm để thực hiện thôi. Thế nhưng không một nghiên cứu sinh nào chứng minh được nó nên Langlands tự mình, rồi nhờ các nhà toán học khác vào cuộc.Đến khi không ai chứng minh được nó, người ta mới gọi nó bằng cái tên quan trọng hơn: “Bổ đề Cơ bản”. Sở dĩ họ không chứng minh được vì các nhà khoa học thế giới đã sử dụng cách tiếp cận chưa đúng, ví như dùng sợi dây quá mảnh, cái móc quá nhẹ nên chỉ ném móc ở khoảng cách gần không tài nào tới con tàu được. Bao nhiêu nhà khoa học tìm đến để thử sức "quăng dây móc" để rồi rút khăn ra lau mồ hôi hột mà thốt lên "khó quá".

Trong hơn ba mươi năm, vì không ai chứng minh được Bổ đề Cơ bản nên nhiều nhà toán học cứ giả định là nó đúng và xây dựng những công trình dựa trên giả định này. Giả thử nó sai, hàng loạt lý thuyết toán học mà nhiều người dày công xây dựng sẽ sụp đổ.

Cuối cùng, GS.NBC là người với tính ham mê nghiên cứu khoa học đã thấm vào trong máu đã tìm đến và ngỏ lời được thử sức kéo 2 con tàu đó lại. Các nhà khoa học thế giới động viên : "Được chứ, anh cứ ném thử bao nhiêu lần cũng được, khi nào chán thì sang đây uống trà với chúng tôi". Bằng một cách tiếp cận hoàn toàn bất ngờ và mới mẻ ông đã giúp mọi người nhìn lại Bổ đề Cơ bản với cách hiểu hoàn toàn mới. GS sử dụng sợi dây thật to và cái móc khá nặng ném thử một lần, ném rất mạnh. Các nhà khoa học kia đứng lên ngạc nhiên, nhiều cốc trà đá rơi xuống đất. Rồi GS.NBC ném thật, chính xác, 2 cái móc dính vào 2 con tàu ngay, mọi người vỗ tay ầm ĩ. Rồi GS.NBC bảo các nhà toán học khác cầm dây và bắt đầu kéo 2 chiếc thuyền kia tượng trưng cho 2 lý thuyết toán học kia lại gần để nghiên cứu.
Thời điểm đó là năm 2004, cùng với người thầy của mình là GS Gerard Laumon, GS chứng minh những trường hợp đặt biệt của Bổ đề Cơ bản, và năm 2008 đã giải quyết được toàn bộ bài toán trong trường hợp tổng quát. Phương pháp của GS được kỳ vọng sẽ là công cụ giúp giải quyết những bài toán khác trong chương trình Langlands, thậm chí toàn bộ các giả thuyết làm nên tầm nhìn của Langlands vì cho dù ai làm được việc này cũng sẽ phải dựa vào những ý tưởng Ngô Bảo Châu đưa ra.

Vậy vì kết quả của nó được sử dụng để chứng minh cái kết quả quan trọng hơn (lý thuyết về mối liên hệ giữa lý thuyết số và lý thuyết nhom) nên nó được gọi là bổ đề. Vì ông Langlands phát hiện ra phương trình tương quan giữa các thông số hình học và số học có các tổng số phức tạp bằng nhau mà không chứng minh được, NBC nhà ta lại làm được chuyện đó nên có thể nói, đây là bước tiến mang tầm thế giới của toán học chứ chẳng phải của riêng nước ta.

Bài viết có tham khảo và sử dụng nguyên văn một số câu trong bài báo của Joe Dâu Tây trên báo dantri.com.vn và một bài báo trên otofun.net
Về Đầu Trang Go down
http://cd06b.forum-viet.net
the_manh_87
Lớp Trưởng
Lớp Trưởng
avatar

Tổng số bài gửi : 117
Join date : 16/03/2010

Bài gửiTiêu đề: Re: Bổ đề cơ bản   Mon Aug 30, 2010 5:40 pm

OKI,Tuấn đưa cái này lên khá hay đấy.Cho cái + đỡ buồn ha.
Về Đầu Trang Go down
nguyenduytuan
Administrator
Administrator
avatar

Tổng số bài gửi : 596
Join date : 07/01/2010
Đến từ : TP. Buôn Ma Thuột

Bài gửiTiêu đề: Re: Bổ đề cơ bản   Thu Sep 09, 2010 1:19 pm

Hix chỉ có Mạnh là hiểu ta thôi. Không ai comment thêm gì sao
Về Đầu Trang Go down
http://cd06b.forum-viet.net
the_manh_87
Lớp Trưởng
Lớp Trưởng
avatar

Tổng số bài gửi : 117
Join date : 16/03/2010

Bài gửiTiêu đề: Re: Bổ đề cơ bản   Thu Sep 09, 2010 7:08 pm

Hi, không nên chấp mấy đứa khác không hiểu.Chỉ có tư tưởng lớn mới hiểu nhau thôi phải không thằng bạn.
Về Đầu Trang Go down
nguyenduytuan
Administrator
Administrator
avatar

Tổng số bài gửi : 596
Join date : 07/01/2010
Đến từ : TP. Buôn Ma Thuột

Bài gửiTiêu đề: Re: Bổ đề cơ bản   Thu Sep 09, 2010 7:17 pm

hey, đừng có nói vậy đụng chạm lắm đó. hi hi
Về Đầu Trang Go down
http://cd06b.forum-viet.net
phamvanngoc
kĩ sư 4 năm kinh nghiệm
kĩ sư 4 năm kinh nghiệm
avatar

Tổng số bài gửi : 44
Join date : 07/01/2010
Age : 29
Đến từ : kiep truoc

Bài gửiTiêu đề: Re: Bổ đề cơ bản   Thu Sep 09, 2010 8:05 pm

Hiểu nhau cơ bản.kaka
Về Đầu Trang Go down
Sponsored content




Bài gửiTiêu đề: Re: Bổ đề cơ bản   

Về Đầu Trang Go down
 
Bổ đề cơ bản
Xem chủ đề cũ hơn Xem chủ đề mới hơn Về Đầu Trang 
Trang 1 trong tổng số 1 trang

Permissions in this forum:Bạn không có quyền trả lời bài viết
DIỄN ĐÀN LỚP CD06B :: GIẢI TRÍ :: SƯU TẦM-
Chuyển đến